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ELASTIC WAVE PROPAGATION IN TWO-COMPONENT MEDIA* 

R.I. MOKRIK and YU.A. PYR'EV 

The problem of pressure and stress perturbation propagation after the 
application of a sudden load to the boundary of an elastic porous half-space 
saturated by a viscous fluid or gas is investigated. The solution is 
represented in the form of integrals over segments connecting singularities 
of the Fourier transform in time forthe solution of the problem. 

Solutions of non-stationary problems within the framework of the model of a two-component 
porous medium saturated by a viscous fluid /l-4/arc ordinarily constructed with certain 
constraints on the values of the parameters of the multicomponent medium. For instance, these 
are the softness of the porous medium (weakly-cemented mountain rock) /3/, thesmallnessofthe 
coefficient characterizing the dissipative properties of the medium (slightly viscous saturat- 
ing fluid) /5/, etc. 

The problem of longitudinal wave propagation in a porous medium saturated by a viscous 
fluid or gas is investigated below for arbitrary values of the parameters of this system and 
a complete analytic solution is constructed that is suitable for any value of the time the 
process takes. 

1. We consider the problem of pressure and stress perturbation propagation after a sudden 
application of a load to the boundary of an elastic half-space saturated with a viscous fluid, 
or (as is equivalent in a mathematical sense), to the bottom hole of a drainage gallery strip- 
pingstratawith absolutely rigid roofs and basements /3/. The system of equations describing 
such motion has the form /l-4/ 

Here f is the porosity, C7u af, 81. Gl are the rates of displacement of the skeleton and 
the fluid, plO, pzO are the solid phase and fluid densities, p, is a coefficient characterizing 
the dissipative properties of the medium (p, = i]f',6,n istheviscosity, and 6 isthepermeability), 
flZ is the coefficient of dynamic coupling between the skeleton and the fluid (it was 
assumed that fil = 0 in /l, 3/), to be specific we consider fi2 = ([t, - ~~)1(1-~: P. Q. II are 
the moduli of the porous medium /4 / for whose calcuiation the porosity j, the solid phase ClO. 
fluid C:,, and skeleton c, compressibilities, and the skeleton shear modulus p1 must be given. 

The normal stress c in the solid phase and the pressure p within the fluid have the form 
/4/ 

d’$+Q$ -p=Qfi+fiK 
(I: 6: . (1.2) 

The solution of system (1.1) is ccnstructed in the domain z>@? --r‘< 1< I*; for the 
following two kinds of boundaq conditions: 

or 

u (z. r) /z=O = 0. F (z, 1) I:zO = p*H (i), -zc < t < cc (1.3) 

u (L. t) IzcO = o,H (1). p (L, i) j>sO = 0, --3o < t < co (1.4) 

that describe the pressure rise in the gallery (liquid piston) or the load application from a 
highly-permeable piston, respectively, and under the casuality conditions 16, ?/ 

11 (z. f) = I' (z. 1) = 0. t c 0. z > 0 (1.5) 
H~/)=Owhen!<U. H(f)= lwhent>O. 

2. We use the complex Fourier integral transform in time with the transformation paran,eter 
0 to solve the problems (l.l), (1.3), (1.5) and (l.l), (1.4), (1.5). Then the stress field 
and pressure can be represented by three functions G, (E. t,O), G, (5, T. 1). G, (E, r,O) in the dimen- 
sionless coordinate ', and the dimensionless time t 
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for the first kind. of boundary conditions (1.31, and 

for the second kind of boundary conditions (1.4). Here 

(2.3) 

(2.3) 

TZL?_ ;=i 
h’ _ h’ 

h is a characteristic linear dimension which can, for instance, be selected in the ioxm h= 

W:B,-’ for #$#O. 
The functions Gf (E. 7. n) (j = 1.2; II = 0.1) can be represented as follows in the form of 

integrals over segments connectin? the branch points y. = Q, x = 0, x = -idc” of the functions 

YI (z). fu (XI whose analytic properties are studied in /S, 9/: 

Gj (5: T, n) = fH (7-1 - H (T,)] Ij (Fe T* n) - (2.4) 

H (r,) 1,’ (E. 7, n) 2 i-3)’ H (T_) Ijz (t. T, ?t) 



241 

As is seen, 6,. 6, axe variable limits of integration that depend on the parameters of 

‘Pi = EY* - fJ-5 y* 5 2-‘/r [(Z” i_ x,y K l $ (zo - x*y K-J 

K* = (k, + X20)%, ok = 2-"19 [(z" + X,")"t K_ - (Z"- X*')": K.] 

zc = [(X,')' -i_ (y')*]'$ X," = -XpcQ + b + kdlO, Y, = ZQ 

k” = [(x*0 - 2)’ + (xl’)*l’ r, e,, = e,, = --2..k0, et0 = 1 

A = (k&’ + b - fu).‘2, cf = 2’/* Ia + (Q' - 4C)'/*1-'/* 

T* = t - E!C* 

d lo= 0, d*o = -- I, dli =; 
sign (y.?“) k&l, ] x2= I > 6” 

2ne1k8bs1 arc sin (y.20/6c), ] y.?’ 1 CT 6” 

the porous medium, where 6" is an arbitrarily small quantity. 
The near-front asymptotic forms fox T = E,c_ and the jumps for t== E'C_ have the following 

form for the functions Gj(F,T,?Z) 

Gj(F, T, n)=(- l)‘(T_)“H(t_)e~p(- Eq_). T_-+O (2.5) 

IG, (E, t, ?I)]+ = (T,)” exp (-!q+), f, -4 0; j = f,? 

(q* = C*‘, (b, 5 %n”%) ‘4) . 

Their behaviour as T+ x can be obtained from the representations of the functions 
Gj (E,T,~) in the form (2.31, (2.4): 

Note that as the coefficien t P,. characterizing the dissipative properties of the medium, 
tends to zero, the relationships 12.1), (2.2) can be reduced to the foml 

P P* = (‘F:o - VIO) H, (7) + H CT,), U jl+ = -$,,H, (T) (2.i) 

(3 =* = (92” - Y,o) H, (Tj T Ii CT+), &J (3, = --flolf, (T) 

(fi, (T) = 11 CT_) - ii (T-j) 

3. The solutions (2.1) azzd (2.2) yield the following pattern of the process from the 
representation of the functions G,, (t. T. n) in the form (2.4) and their behaviour in the 
neighbourhoods of the characteristic points T = E ‘c-7 T = : c and t--+ZQ. 

After a sudden application of the pressure on the boundary of the half-space (E = 0) at 
a point at a distance 1. a pressure wave p’p* appears in the fluid and a stress wave a,‘~, 
in the skeleton after a time interval T = g'c, with jumps, respectively, of magnitudes 

P'P*?_ = (cc20 - vdelp (- Erl,), IO.‘P*l_ = - 310 ex-p (- &I_) . (3.1) 

At the time 'c = E>+ the pressure and stress also experience jumps, respectively, by amounts 

Ip’pJ+=(q20 L cllo)esp(- E+), [o.‘p,l+ = qlOexp (- Eb) . (3.2) 

With time the pressure in the fluid rises to the value of the applied pressure on the 
half-space boundary while the stress tends to zero as T- w: 

p.lp* = 1 - q’hk: (kk,rr)-’ * Ft-‘/* 

a’p, = -E, ‘:*li; (kk,n)-‘it ET-‘,’ . 
(3.3) 
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Fig.1 Fig.2 

For the second method of applying the load (1.41, the qualitative pattern of stress and 
pressure perturbation through the point E is conserved. The stress and pressure jumps for 
r=;c and 1 = ;.c, 
stitutions 

are detemined by formulas analogous to (3-l) and (3.21 (with the sub- 
P.JJ, --+ a'~,. o:'p* - P.'u*, qj<a 4 Qj(,! $,o -+ ,l,o). AS T -+ oc we have formulas analogous 

to (3.3) (with the substitution 11 I'*- o o,, o,jcr, -t pl’oet k7 --f As). 
The magnitudes of the jumps T = EC_ and T = : c_ diminish by a factor of e, respectively, 

at the distances I_ = i I]_. f_ = 1 I]_. which are inversely proportional to e, (i.e., the viscosity) I 
and they are not substantial at large distances. 

4. Computations were performed for certain models. The physical constants of quartz 
sandstone, oil, gas, and water were taken from /iO/. 

Changes in the stresses up,.c~~ and the pressures p~~.pa, in a water-saturated (curve 
11, oil-saturated (curve Zj, and gas-saturated (curve 3) half-space are showninFigs.1 and 2 
as a function of the time T in a section at a distance :=1 from the surface of application 
of the pressure p. and the stress 5.1 The quantities calculated by means of (2.11, (2.2), (2.4! 
correspond to the solid lines, and quantities calculated by means of (2.7) for the fluid 
viscosity E,= 0. by dashes. Tne dimensionless distances of the jump penetration are for 
the gas- saturated i_ = 2.3.103, I, = 2.1, oil-saturated I_ = 4.7.10~. 1_ = 1.6. and water saturated 
I_ = 3.8.101, I, = I.? half-space. 

The significant influence of the parameter E~ on the stress and pressure distribution in 
a porous medium follows from the res.dlts shown in Figs.1 and 2. 
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